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Abstract: A model of transient modal instabil ity in fiber amplifiers is 
presented. This model combines an optical beam propagation method that 
incorporates laser gain through local solution of the rate equations a nd 
refractive index perturbations caused by the thermo-optic effect with a time­
dependent thermal solver with a quantum defect heating source term. This 
model predicts modal instability in a 285 Watt fiber amplifier characterized 
by power coupling to un-seeded modes, the presence of stable and unstable 
regions within the fiber, and rapid intensity variations along the fi ber. 
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I. Introduction 

Recent evidence suggests that dynamic thermal modal instability (TMI) affects the beam 
quality of large mode area high average power fiber ampli tiers [ 1,2,3 ,4,5). The resulting 
degradation severely limits the usefulness of these devices. Efforts to improve fiber amplifier 
designs to mitigate this degradation benefit from numerical models that reveal the effects of 
ampli fier parameters on performance. Several previous investigations have all but isolated the 
cause to refractive index gratings caused by spatial-temporal temperature variations that arise 
from quantum defect heating through the thermo-optic effect [6,7,8,9,10). A key aspect of the 
physical description of this phenomenon is the time behavior of the temperature profile within 
the fiber. Under the assumption that the temperature at any point within the fiber is a periodic 
function of time, a steady-state solution to the optical wave equation arises that describes the 
process of stimulated thermal Rayleigh scattering {STRS). Numerical models have been 
presented that capture the essential features of STRS in fiber amplifiers [9,10,1 1,12]. 
Observations of periodic modal fluctuations in the output beams of amplifiers operating near 
the TMI threshold are consistent with the STRS picture of TMI [3,7). This regime of TMI 
relies on the amplifi er optical and temperature fields achieving a dynamic equilibrium which 
may be unstable with respect to external perturbation [9]. 

Although significant understanding is provided by the steady-state model, several factors 
motivate further study of the transient behavior of TMI. Amplifiers operated with a rapid 
turn-on may not reach steady-state equilibrium prior to the onset of TMI thus the threshold 
calculated using the periodic method may be higher than values that characterize realistic 
operating conditions. One definition of the TMI threshold has been given in terms of the 
buildup time required to observe the effect [5]. Also, observed TMI is often characterized by 
chaotic behavior [3,4, 7) not able to be described in the context of a periodic model. The goal 
of the work presented here is to present a computational model that can enable a greater 
understanding of the chaotic and transient regimes of TMI. This model incorporates a 30 
beam propagation method (BPM), including laser gain, for the spatial evolution of the signal 
field as well as a 30 time-dependent thermal model. This model is also capable of describing 
the steady-state periodic case. 

This paper begins with a description of the BPM which is of a new type, followed by a 
description of the thermal solver, also of a new type. Example results are then presented and 
discussed. 

2. Hybrid fi nite element-harmonic beam propagation method 

The problem at hand requires the beam propagation calculation to be performed over the 
entire length of the fiber thousands of times, once for each time step. Each propagation step 
must occur over a fraction of the inter-modal beat length of the fiber leading to a requirement 
to evaluate upwards of one million BPM steps. Thus the computational speed of the BPM is 



at a premium. Recently, a new type of BPM was presented, the azimuthal harmonic 
expansion beam propagation method [ 13], which enables much faster computation than either 
the split-step fast Fourier transfonn BPM (FFT-BPM) or finite difference BPM (FD-BPM). 
This method is based on a hybrid discretization in cylindrical coordinates that combines a 
finite-difference discretization in the radial coordinate with a harmonic Fourier expansion in 
the azimuthal angle. However, a ID finite element approach in the radial direction aids 
treatment of fiber designs with discontinuous refractive index profiles, such as photonic 
crystal fibers, as well as enabling variable grid spacing to conserve the total number of 
unknowns in a natural fashion. A simplification of such a method has been previously applied 
to the study of stimulated Brillouin scattering in fibers [l 4]. 

The starting point is the scalar optical wave equation Eq. (!) valid for weakly-guiding 
fibers 

(1) 

where k0 =(I)/ c is the free space wave-vector and n(r) is the refractive index distribution. 
Invoking the slowly-varying envelope and paraxial approximations yields Eq. (2) 

[- 2ifJ ! +v;+n2 (r, tp,z)k; - p 2 JE(r,tp,=) =O (2) 

where E(r,tp,z) now refers to the slowly-varying envelope, fJ is the wave-vector describing 

rapid oscillations in the propagation direction, and v; is the transverse Laplacian operator. 
Setting oE I az = 0, on I iJz = 0 yields an equation Eq. (3) for the stationary propagating modes 
of the fiber 

[ v; +n2 (r,tp)k; - p 2 ]E(r,tp) = 0. (3) 

To obtain a finite element solution of this equation the variational form Eq. (4) is introduced 

S = ..!_ Jf [ - j'V,£(r, <P)j
2 
+ n2 (r, qJ )kg IE(r, <P)i

2 
- fJ2 IE(r,tp)j2 }tA 

2n 
where n represents the fiber cross-section. Expanding as shown in Eq. (5) 

Q 

E(r,tp) = L E/r)exp(iqtp) 
q• - Q 

where Q is the truncation order of the series leads to Eq. (6) 
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where Eq. (7) and Eq. (8) define the refractive index in Eq. (4), 
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where n0 is a suitable background refractive index. With these definitions the variational 
form is given by Eq. (9) 

S=-_!_ t n[lo£~1
2 

+(q:-kin,; +(J2)!El-k1; t Vq-q'e;e),u. (9) 
2 <1 •-0 n o1 r q'•-o r 



To accomplish the radial integral it is convenient to divide the integration domain into 1 D 
finite elements represented by N - l line segments with end points 'i: : k e I, N . The integrals 

over the fiber cross section are then approximated as shown in Eq. (I 0) and Eq. (11) 

u f (r)exp(iqq;i]dA ""1Z"O(CJ) ~f('k +;k+I ) (1k2+I -In (IO) 

2 N-1(/(r. )- f(r ) )
2 

Q[!' (r)] exp (iqq;i)dA ""no(q)t; :~~. -i;, • (1t
2
•1 - rn ( 11 ) 

The variational form is then conveniently expressed using matrix notation as shown in Eq. 
( 12) 

(1 2) 

the minimization of which leads to the generalized eigenproblem given in Eq. (13) 

(13) 

where Eis a vector of dimension (2Q+ l)N and Kand Mare square matrices with the same 

dimension. If now the envelope is allowed to vary slowly along the length of the fiber such 
that oE I 0:: =t; 0 , then the longitudinal wave vector value k is freely chosen leading to the 
matrix form of the paraxial wave equation as shown in Eq. (14). 

[-2ikM ! + K -k
2
M l E=O (14) 

Differencing E with respect to z and taking one explicit and one implicit step each of 
distance fl:: 12 results in the usual Crank-Nicholson update rule for propagation given in Eq. 
( 15) 

( 
it.z ( 2 ))_, ( it:.z ( 2 ) ) 

E.,+1 = M +4k K.,. 1-k M M -4k K ,,, - k M E,,, (15) 

where the cumulative propagation distance is = = ( m - I) 6z : m e I, M . In this scheme, the 

waveguide refractive index profile, the gain within the core, and the thermally-induced 
refractive index profile are incorporated as shown in Eq. (16). 

on2 (r, q;i,z) =on~ (r, rp) + in0 g(r, q;i,: )+ 2n0 :,. ti.T(r,<p,z) (16) 

where on~v is the waveguiding index profile, g is the optical gain, dn I dT is the thermo­

optic coefficient, and fi.T is the local temperature rise. To a good approximation, the gain is 
instantaneously determined by the local pump and signal intensities whi le the local 
temperature rise depends on the past history of heat deposited in the neighborhood of each 
point within the fiber according to the time-dependent heat equation. 

The matr ix K changes at each step due to its dependence on the signal intensity profile. 
To keep the gain contribution space-centered during the propagation step, the field is updated 
first using the initial matrix Km for both the explicit and implicit steps. Then these field 

values are used to calculate K.,. , which is then used to repeat the implicit step. Furthermore, 

the average refractive index change can increase significantly over the length of the fiber 



necessitating resetting the reference refractive index between steps. This is done 
automatically in the computer implementation. 

3. Gain and heat deposition 

The following discussion pertains to active media for which the atomic energy level 
populations are determined by two-level rate equations where instantaneous decay from the 
lower level to the ground state is assumed. Under these conditions the local fraction of ions in 
the upper state is given by Eq. (17) 

where 1,.p are the signal and pump intensities, hv,.,, are the energies of each signal and pump 

photon, a are the absorption and emission cross-sections at the pump and signal wavelengths, 
and -r: is the upper-state lifetimes. The gain is then given by Eq. ( 18) 

g(r ,rp,z) = N;.., [f (r,rp,=)a., - (1 - f (r,rp, ::) aas )] (18) 

where N,
00 

is the doping density. Similarly, the pump gain is given by Eq. (19) 

(19) 

For cladding-pumped amplifiers, the paraxial approximation is generally not valid for the 
pump light guided in the cladding due to its large numerical aperture. Therefore, constant 
pump intensity throughout the cladding is assumed to be maintained through the process of 
mode mixing so that the evolution of the pump intensity is given by Eq. (20) 

(20) 

where A dao1 is the area of the pump cladding and the ± represents counter versus co-pumping 
arrangements. The heat load due to the quantum defect is then given by the number of ions 
going through the cycle multiplied by the rate that they go through the cycle and the quantum 
defect for each photon as shown in Eq. (21) 

Q(r,rp,z) = N, ... (VP - l)f(r,rp,z)a,,Js(r,rp,z) 
v ,\' 

(21) 

The normalization of the optical fields is chosen so that I, = 1£12 
• Starting from some known 

temperature distribution, the temperature evolves in time at each spatial point according to the 
time-dependent heat equation given by Eq. (22) 

!r(r,rp,z,t) = :c V' 2T(r,rp,=,t)+ ~Q(r,rp,::,t) (22) 

where K is the thermal conductivity, p is the mass density, and C is the heat capacity within 
the fiber. This equation is amenable to a solution approach similar to that used for the optical 
propagation equation. Both T and Qare approximated in rand rp using the ID finite element 
scheme in the radial direction and the azimuthal harmonic expansion . The longitudinal 
component of the Laplacian is evaluated using fi nite differences in the temperature values at 
the z points defining the optical beam propagation steps as shown in Eq. (23) 



ci I 1 -, T(r,<p, z) ~ - 2 [ T,,,.1 (r,<p )-2T,,, (r,<p )+ T,11_ 1 (r, <p) J oz- & 
m 

(23) 

To a good approximation, the thermal properties of the fiber are constant throughout the 
cross-section. Significantly, this causes the different azimuthal harmonic tem1s to de-couple 

yielding (2Q+ 1) independent Crank-Nicholson time step update equations for the 

temperature distribution as shown in Eq. (24) 

M K D.t K D.t 
T - M +--K · M ---K ·T +--M · + 

[ ]
- 1 [ ( ) ] 

q.l+I - TH 2 pC q.TH TH 2 pC q.TH q.I 2pC TH ( Qq.l+I Qq,1) 

(24) 

where l is the time step index, !J.t is the time step, q is the harmonic component, T,,.1 are 

vectors of length M · N and M.111 , Kq.TH are sparse matrices of this same dimension. These 

sparse matrices are assembled by inserting blocks of values that when multiplied by the Tq.t 

approximate the integrals over the fiber cross-section as described by Eq. (25) and Eq. (26): 

N-1 M 

M TH =LLD.A• [ vk .m ·v;_m ] 
kc l m• I 

(25) 

N -1 M [ I T 4q2 T 
K =- M -u ·U + v ·V q.TH LL k /J,. ,2 k ,m k .m (. )2 k ,m k ,m 

h l m;J lk 1k+rk+I (26) 

where Mk is the area of the annulus with inner and outer radii of rk and '!-+i , v k,m are column 

vectors that have two non-zero entries each with value I I 2 at locations m · N + k and 
m·N +k + I, and uk,m are column vectors that have two non-zero entries with values -I and I 

at locations m · N + k and m · N + k +I . The choice to order the vectors T
9

.1 first in k is 

arbitrary and leads to contiguous blocks non-zero entries of dimension N in the matrices. 
To keep the time step update centered in time, the harmonic components of the heat load 

given by Eq. (27) 

I 2n 

Qq,tzm = 
2
,. J Q(1j,,<p,z.,,t1)exp[-iq<p]a'<p 

0 

(27) 

must be evaluated at the beginning and end of each time step. Therefore the updated 
temperature is calculated first using the initial heat distribution. This temperature distribution 
is then used to update the optical field leading to the updated heat distribution. This is then 
used to repeat the temperature update, this time incorporating the heat distributions at the 
beginning and end of the time step. To start the simulation an initial temperature distribution, 
input mode field, and input pump power must be specified. 

The input mode field is taken to be a superposition of guided modes with pre-specified 
amplitudes. Additionally, a time-dependent phase shift may be applied to one or more of the 
input modes to incorporate a frequency shift between modes as shown in Eq. (28) 

N 

E(r,<p,O,t) = L.JP,;"En (r,<p )exp[ if., (t)J (28) 
n=I 



where Pn and £,, ( r, rp) are the power and mode field distribution of guided mode n . This has 

been shown to induce inter-modal coupling through the process of stimulated thermal 
Rayleigh scattering [9, 10,11,12]. 

4. Computational implementation 

The model described above is a 3+ ID fiber amplifier model with a hybrid discretization 
scheme in cylindrical coordinates employing finite elements in the radial direction, a 
harmonic expansion in the azimuthal direction, and a finite difference grid in the direction of 
optical propagation. For a fiber length of 1.63 meters with a beat length of 22.3 millimeters, 
I 00 samples per beat length lead to a longitudinal grid with 7300 points. The fini te element 
approach in the radial dimension permits variable radial point spacing thus reducing the 
number of radial points to about I 00 that span the entire fiber cladding radius, resulting in a 

matrix order of approximately 7.3x I 05 for each of the (2Q+ 1) thermal matrices. Since the 

region involved in optical propagation is only at the center of the fiber, a subset of the thermal 
radial points is used in the optical propagation equations. This region is typically 2- 3 times 
the core size. Fig. I depicts the computational steps required to implement this method. 

rc3d in: 
fiber modes 

waveguide profile 
run parnmclcrs 

initial opticul 
propagation: I mode, 

no thcnnal cllccts 

solve lime 
indcpcndcm heat cq. 
for T initial profile 

•oplical data stored only 
once per time step 

loop over lnne slcps 

set optical inpul field 

loop over propagation 
s1eps 

store optical field 
subset and heat load 

explicit optical C·N 
hair-step 

implicit optical C·1' 
hair-step 

update propagation 
ma1rix 

implicit optical C·N 
half·SlCJl 

store output optical 
field 

explicit thcrmul C-N 
half-step 

implicit thermal C-N 
half-step 

repeat bcilm 
propagation loop• 

implicit thermal C-N 
hair-step 

store thcmtal prorilc 

Fig. I. Sequence or required to carry out the time dependent amplifier simulation. 

This approach can be used for any waveguide profile for which the harmonic expansion 
can be calculated, however, those with stronger azimuthal variations require higher truncation 
orders. It is convenient to use separate truncation orders Q for the optical and thermal 

problems. For modeling photonic crystal fibers with small capillaries truncation orders of 

Q""' 0 I0 - 20are appropriate while for step index fibers, Q
0
P1can be chosen to include the 

highest azimuthal order propagating modes supported by the fiber. For typical large mode 

area fibers Q,.,. D 2 - 4 suffices. Likewise, the averaging effect resulting from heat diffusion 



means that Qt1i=t 0 2 -4 for all types of fibers. Nevertheless, the orders may be increased 
until the desired level of convergence is achieved. The simulation time is most sensitive to 
Qop, because this affects the speed of the beam propagation portion of the calculation which is 
the most time consuming. The simulation time of a large pitch photonic crystal fiber was 
observed to be about five times greater than that of a step index fiber. 

Within this approach, the primary computational tasks are sparse matrix multiplication and 
sparse linear system solution. Various software packages are available for these tasks that 
take advantage of modern multi-processor high performance computing architectures. The 
implementation reported here relies on parallelization using the message passing interface 
(MPl) [ 15]. Within MPI, each collective task on the processor grid is mediated through an 
MPI communicator. To solve all harmonic components of the thermal problem 
simultaneously, the processor grid is divided into sub-communicators, one for each harmonic 
component. Therefore, as long as processors are available, the thermal harmonic order may 
be increased with negligible increase in the time required to accomplish the thermal update. 

During the beam propagation portion of the calculation, the temperature distribution 
remains stationary in memory scattered across the processing grid and the required 
temperature values are broadcast to all processes at each spatial propagation step. The hybrid 
discretization scheme greatly reduces the number of floating point operations required for 
each update step compared to other discretization techniques. Therefore the optical solution is 
obtained faster by the group of processors on each sub-communicator performing its own 
optical update than by spreading the optical update matrix operations across the entire 
processing grid due to the communications overhead required. As the thermal order is 
increased, additional communications time is required to retrieve the additional temperature 
information for the optical update step leading to a gradual increase in the total time to 
solution. 

S. Example results 

As a first example, it makes sense to compare the results of this model to a prior model 
that employed coupled mode theory for the optical propagation [7] . The double-clad 
Ytterbium-doped amplifier parameters are given in Table 1. Due to the calculation speedup, a 
step index fiber approximately equivalent to the photonic crystal fiber discussed before was 
simulated. 

Table 1. Simulated Fiber Parameters 

Parameter 
core diameter 

pump cladding diameter 
outer cladding diameter 
core numerical aperture 

fundamental mode field area 
beat length LP01-LP11 

fiber length 
yb +l doping concentration 

signal wavelength 
pump wavelength 
signal power LP01 
signal power LP 11 

pump power 
signal emission cross-section 

signal absorption cross-section 
pump emission cross-section 

pump absorption cross-section 

Value 
74 µm 
170 µm 
400 µm 

O.o3 
2750 µm2 

22.3 mm 
1.63 m 

3.5xJ025 m·3 

1.064 µm 
0.977 µm 

9.5W 
0.5 w 
357 w 

3.58x10·25 m2 

6.00x I 0-27 m2 

l.87x 10·24 m2 

I .53 x 10"24 m2 



upper state lifetime 
thermal conductivity 

heat capacity 
mass density 

thermo-optic coefficient 
heat sink temperature 

z grid spacing 
time step 

total simulation time 
thermal radial points 
optical radial points 

doped core radial points 
optical azimuthal order 
thermal azimuthal order 

850 µs 
1.38 W/m-K 
703 J/kg-K 
2200 kl!/m3 

1.2x IO~ K- 1 

300 K 
2.23 x I 0·4 m 

I.Ox I 0·5 s 
10 ms 
IOI 
56 
30 
3 
2 

Furthermore, there was no material, scattering, or bend loss assumed. The outer boundary of 

the fiber cladding is maintained at a fixed reference temperature thus assuming perfect 

conductive cooling. Also, the pump and signal linewidths were assumed negligible. 
A counter-pumped configuration was assumed for this simulation in which the total pump 

absorption throughout the fiber was approximated to be constant so that the pump intensity at 

the seeded end could be set as a boundary condition. 
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Fig. 2. Plot of the optical intensity as a function of length at the center of the fiber core and at 
points offset from the center of the fiber core by half the core radius after a simulation time of 
10 ms. The accompanying movie (Media I) shows the evolution of these intensity probes over 
a time period of 10 ms. The inset shows the optical field at the output. 

Fig. 2 and the accompanying movie show the time dependence of the optical intensity within 

the fiber core and the output intensity distribution over time. The simulation was started with 

all of the power launched into the LP01 mode and then the LP11 was gradually introduced over 

a period of 0.1 ms. The introduction o f the higher order mode immediately causes the output 

to become unstable. In agreement with the coupled mode theory results [7) the instability is 
confined to the latter po1t ion of the amplifier and is more severe near the output end. 

Furthermore, as t ime progresses the stable region grows in extent as the thermally induced 

grating reaches stable equilibrium. This equilibrium region is possible due to the fact that the 

two modes are launched at the same optical frequency and so no moving grating exists at the 

seed end [6). This is also in agreement with the coupled mode theory results [7]. 
While there are some similarities between the appearances of Fig. l and Fig. 2 of [7) 

different quantities are being plotted. Fig. I shows the local intensity probe at three points 



while the prior published figure shows the modal content. The full optical field that is 
required to calculate the modal content was not stored at every longitudinal position for every 
time step due to the large file size that would be required. Nevertheless, rapid spatial 
oscillations characteristic of non-adiabatic power transfer [8] are evident in both. The beam 
propagation model described here also captures the effect ofthennal lensing on the mode field 
area of the fundamental mode of the fiber. The mode field area of the cold fiber is 2750 µm 2 

and at the output end of the heated fiber, the area decreased to 1960 µm2
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Fig. 3. Modal content of the amplifier output over time as well as total power from the 
integrated optical output intensity and the sum of the first 8 modal powers. 

Fig. 3 shows the time evolution of the output modal decomposition. It is significant to 
note that even though only two transverse modes are launched at the input, power scatters into 
other modes almost immediately. Since the thermal boundary condition was symmetric in 
this simulation, one would expect that the output would retain mirror symmetry about the axis 
of the launched LP 11 mode but this was not the case. This was attributed to the fact that the 
sparse linear solvers used to accomplish the beam propagation were of the iterative variety so 
that each propagation step and thermal update introduces error into the optical fi elds and 
temperature profile depending on the chosen convergence tolerance. It is tempting to 
immediately propose a correspondence between residual error in the equation solutions and 
unavoidable imperfections in the optical waveguide structure. A fundamental question 
regarding the observed instability is whether the symmetric solution is unstable with respect to 
power present in non-symmetric modes and the results presented here suggest that it is. This 
matter warrants further study that is beyond the scope of this paper. 

The total output power was found to fluctuate in disagreement with some reports (4). This 
is attributable to the fact that the spatial fluctuations of intensity within the fiber inhibit 
efficient extraction of the available gain thus causing the uniform pump absorption 
approximation to break down. This observation suggests an additional mechanism for 
feedback that can drive the instability. lt has been shown that amplitude fluctuations at the 
seeded end of amplifiers can cause a steady-state amplifier solution to become unstable [9). If 
fluctuations in the spatial intensity cause varying amounts of pump to be absorbed in a 
counter-pumped configuration, this would effectively modulate the seed level present near the 
input end of the amplifier thus providing the feedback mechanism modulating the amplitude 
causing instability. 

Jt is also apparent that the incorporation of the beam propagation model significantly 
lowers the instability threshold. The pump power of357 W in the simulation here was below 
the previously observed approximate instability threshold of I 060 W [7] for the conductively­
cooled case and yet instability is clearly present. This suggests that models of the transient 



regime based on coupled mode theory should include all guided modes in order to accurately 
capture instabili ty behavior. This also agrees with the observation that larger cores that 
support more transverse modes exhibit lower instabili ty threshold powers. Experimentally­
observed instability thresholds for this type of amplifier are yet lower so clearly the 
incorporation of the beam propagation model improves prospects for agreement of the model 
with observed thresholds. 
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Fig. 4. Frequency spectra of the first five modes of the simulated fiber. 
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Fig. 4. shows the frequency spectra of the transverse modes at the fiber output. No sharp 
frequency peaks are visible indicating a degree of randomness in the output. Also, the high 
frequency tai l was more prominent in the lower-order modes, which is not immediately 
evident just by examining the time series shown in Fig. 3. 
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Fig. 5. Temperature distribution as a function of length at the fiber core and al points offset 
from the center of the fiber core by half the core radius. The accompanying movie (Media 2) 
shows the evolution of these temperature probes over a time period of 10 ms. 

The temperature was recorded in time at the same sampling points as the optical intensity 
throughout the fiber and is presented in Fig. 5. As expected, the temperature is static in the 
region of the fiber not experiencing instability but is irregular where the optical intensity 
fluctuates. Due to the length of the thermal diffusion time, the temperature cannot keep up 



with the rapidly fluctuating intensity. Rather, it exhibits slowly varying behavior that captures 
a windowed time average of the quantum defect heating profile. Both the center temperature 
and the amplitude of the temperature fluctuations are irregular and not uniform across the core 
as revealed by the difference between the profiles at the core center and off center. Observing 
the time evolution of the temperature profile from the beginning of the simulation where all of 
the power was in the LP01 mode reveals an immediate overall temperature drop as power is 
first introduced into the LP 11 mode and then coupled into the other higher order modes. This 
is consistent with the prior observation that higher order modes create a lower heat load than 
the fundamental [7] and therefore transfer of power out of the fundamental mode decreases 
the optical length of the amplifier. 

6. Model limitations, and future investigations 

The model presented here has some limitations in its current form that deserve discussion. 
The first is that bending losses and bend-induced mode distortion are not accounted for. An 
effective index gradient may be incorporated in the usual fashion to account for bending [16]. 
This breaks the azimuthal symmetry of the step-index profile leading to additional terms in 
the harmonic azimuthal expansion of the index. The optical boundary condition use here is 
lossless and perfectly reflecting. It is possible that transparent boundary conditions [ 17] could 
be adapted to the paraxial scalar beam propagation presented here as was done for a previous 
similar method [13]. Furthermore, material loss is not accounted for. In the current 
implementation, the doped region of the core must be assumed to be uniform and circular. 
While this is true of some step index large mode area fibers, micro-structured fibers often 
have some additional structure that arises from the stack and draw fiber fabrication method. 
As was already mentioned above, the presented model does not hold the launched pump 
perfectly constant for counter-pumped configurations which are practically a necessity for 
minimizing the effective amplifier length to maximize non-linear thresholds. An efficient 
method for overcoming this limitation in the transient regime is not immediately apparent. 
Finally, in its current form, this model requires high-performance computing resources to use. 
It is not suitable for desktop computers. 

The model presented here can enable numerous future investigations a few of which are 
briefly discussed below. First, it is important to verify that in the absence of noise, quantum 
or otherwise, the amplifier can reach stable thermo-optic equilibrium. While a previous 
investigation predicted dynamic instability even in the absence of such noise [7], this could 
have been due to limits in the achievable accuracy of the solutions of the derived equations. 
This instabili ty was also predicted to occur at power levels much higher than those at which 
has been observed suggesting that noise plays an important role in the origin of instability. 

This model could also be used to analyze the effects of different types of noise on the 
onset of instability. This could include frequency offsets between modes, fluctuations of 
pump and seed powers, and other time varying launch conditions. Build up and decay times 
of instability could also be studied. The potential for increasing the instability threshold 
through advanced fiber designs could also be studied. For example the model can treat large 
pitch photonic crystal fibers that rely on de-localization of higher order modes for 
fundamenta l mode discrimination. 



7. Conclusion 

A model of transient modal instability in fiber amplifiers has been presented. T his model 
relies on a time-dependent 3-dimensional treatment of the effects of quantum defect heating 
on the waveguiding properties of amplifier fibers. This model has confirmed some 
predictions first made using coupled-mode theory. These include the existence of stable and 
unstable regions along the length of the fiber, their evolution over time, the increase in the 
severity of the instability toward the output end of the fiber, and rapid optical intensity 
variations along the fiber. It has also exhibited several additional aspects of TM! including 
coupling to un-seeded modes and lower onset threshold powers compared to a p rior model 
that are more in line with experimental observations. 

Efforts have been made to reduce the time required to perform the calculations including 
the realization of a new hybrid finite element, harmonic beam propagation method, a hybrid 
finite element, harmonic, finite difference thermal solver, and parallel implementation on 
modern high performance computing architectures using the message passing interface. This 
method should prove a useful tool in studying and eventually overcoming the techno logical 
challenges presented by TMI in high average power fi ber amplifiers. 
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